Our Deadened, Carbon-Soaked Seas

The New York Times, October 15th, 2015,

Ocean and coastal waters around the world are beginning to tell a disturbing story. The seas, like a sponge,

nytimes oa picare absorbing increasing amounts of carbon dioxide from the atmosphere, so much so that the chemical balance of our oceans and coastal waters is changing and a growing threat to marine ecosystems. Over the past 200 years, the world’s seas have absorbed more than 150 billion metric tons of carbon from human activities. Currently, that’s a worldwide average of 15 pounds per person a week, enough to fill a coal train long enough to encircle the equator 13 times every year.

We can’t see this massive amount of carbon dioxide that’s going into the ocean, but it dissolves in seawater as carbonic acid, changing the water’s chemistry at a rate faster than seen for millions of years. Known as ocean acidification, this process makes it difficult for shellfish, corals and other marine organisms to grow, reproduce and build their shells and skeletons.

About 10 years ago, ocean acidification nearly collapsed the annual $117 million West Coast shellfish industry, which supports more than 3,000 jobs. Ocean currents pushed acidified water into coastal areas, making it difficult for baby oysters to use their limited energy to build protective shells. In effect, the crop was nearly destroyed.

Human health, too, is a major concern. In the laboratory, many harmful algal species produce more toxins and bloom faster in acidified waters. A similar response in the wild could harm people eating contaminated shellfish and sicken, even kill, fish and marine mammals such as sea lions.

Increasing acidity is hitting our waters along with other stressors. The ocean is warming; in many places the oxygen critical to marine life is decreasing; pollution from plastics and other materials is pervasive; and in general we overexploit the resources of the ocean. Each stressor is a problem, but all of them affecting the oceans at one time is cause for great concern. For both the developing and developed world, the implications for food security, economies at all levels, and vital goods and services are immense.

This year, the first nationwide study showing the vulnerability of the $1 billion U.S. shellfish industry to ocean acidification revealed a considerable list of at-risk areas. In addition to the Pacific Northwest, these areas include Long Island Sound, Narragansett Bay, Chesapeake Bay, the Gulf of Mexico, and areas off Maine and Massachusetts. Already at risk are Alaska’s fisheries, which account for nearly 60 percent of the United States commercial fish catch and support more than 100,000 jobs.

Ocean acidification is weakening coral structures in the Caribbean and in cold-water coral reefs found in the deep waters off Scotland and Norway. In the past three decades, the number of living corals covering the Great Barrier Reef has been cut in half, reducing critical habitat for fish and the resilience of the entire reef system. Dramatic change is also apparent in the Arctic, where the frigid waters can hold so much carbon dioxide that nearby shelled creatures can dissolve in the corrosive conditions, affecting food sources for indigenous people, fish, birds and marine mammals. Clear pictures of the magnitude of changes in such remote ocean regions are sparse. To better understand these and other hotspots, more regions must be studied.

Read more here

Sea Change – Supply challenges and climate changes are forcing the U.S. seafood industry to adapt

March 2015, By Sherry Daye Scott, QSR Magazine

California-based fast casual Slapfish, which serves a range of premium seafood items—including a Bowl of Shrimp either chilled or fried—partners with Aquarium of the Pacific to develop and maintain a sustainable sourcing plan.

California-based fast casual Slapfish, which serves a range of premium seafood items—including a Bowl of Shrimp either chilled or fried—partners with Aquarium of the Pacific to develop and maintain a sustainable sourcing plan.

Though U.S. consumption is well below other proteins today, seafood will likely be an increasingly important part of the American diet in the years to come. The country’s population is predicted to grow by 89 million between 2010 and 2050 to 401 million people. More people require more food—and land limitations mean the beef, pork, and poultry industries can only produce so much volume.

Increased domestic consumption will have a direct impact on restaurant operators who serve finfish and shellfish. On one hand, more Americans eating seafood means the potential for increased sales. On the other, it also means the potential for higher wholesale prices. And while space limitations largely don’t affect the seafood industry, it has its own challenges to contend with, especially in the U.S.

For starters, more than 90 percent of the seafood the U.S. consumes is imported from countries with their own growing demand for protein. China, the global seafood producer and processor leader, is experiencing a rise in its middle class. China used to be a net exporter of seafood, but now it’s a net importer. The same is true of other seafood-producing countries in Asia and South America.

“If I am a buyer of seafood,” says Sebastian Belle, executive director of the Maine Aquaculture Association (MAA), “global demand is going to make it harder for me to source.”

In addition, climate changes are forcing suppliers to reevaluate their sourcing practices and invest in new practices, like aquaculture. These challenges have all levels of seafood stakeholders looking at new ways to approach the present—and future—state of the seafood industry.

Read more here

New Challenges for Ocean Acidification Research

SpaceDaily.com January 2nd, 2015
Kiel, Germany

To continue its striking development, ocean acidification research needs to bridge ocean acidification between its diverging branches towards an integrated assessment. This is the conclusion drawn by Prof. Ulf Riebesell from GEOMAR Helmholtz Centre for Ocean Research Kiel and Dr. Jean-Pierre Gattuso from the French Centre National de la Recherche Scientifique (CNRS) and Universite Pierre et Marie Curie.

In a commentary in the journal “Nature Climate Change”, the two internationally renowned experts reflect on the lessons learned from ocean acidification research and highlight future challenges.

Over the past decade, ocean acidification has received growing recognition not only in the scientific area. Decision-makers, stakeholders, and the general public are becoming increasingly aware of “the other carbon dioxide problem”. It is time to reflect on the successes and deficiencies of ocean acidification research and to take a look forward at the challenges the fastest growing field of marine science is facing.

In the January issue of the journal “Nature Climate Change” Ulf Riebesell, professor for Biological Oceanography at GEOMAR Helmholtz Centre for Ocean Research Kiel, and Jean-Pierre Gattuso from the French Centre National de la Recherche Scientifique (CNRS) urge the international scientific community to undertake a concerted interdisciplinary effort.

According to the two experts, future ocean acidification research will have to deal with three major challenges: It needs to expand from single to multiple drivers, from single species to communities and ecosystems, and from evaluating acclimation to understanding adaptation. “The growing knowledge in each of the diverging research branches needs to be assimilated into an integrated assessment”, Prof. Riebesell points out.

For the scientific community, it is obvious that ocean acidification does not occur in isolation. Rising temperatures, loss of oxygen, eutrophication, pollution and other drivers happen simultaneously and interact to influence the development of marine organisms and communities.

Read more here

Desperately Seeking a Rapid-Onset Response to a Slow-Onset Event – The Case of Ocean Acidification

International Institute for Sustainable Development. May 19th, 2014. By David Osborn, Director, Environment Laboratory, IAEA


I last wrote an article for this bulletin in July 2009 (Guest article #17). On that occasion, I reflected on the immense expectations surrounding the climate negotiations in Copenhagen and the need to ‘Seal the Deal.’ I can see many of you holding back a wry smile as you remember that ambitious campaign so soon forgotten.

Back in those heady days of hope and anticipation, amid all the noise and distraction, I highlighted the pressing need to not forget the changing ocean. I invited governments to acknowledge the impact of climate change on the ocean and find ways to proactively ensure its resilience. Longing for a rapid onset of reform, I called for an ‘ocean of change’ that would finally recognise the centrality and criticality of ocean health to both mitigating and adapting to the effects of climate change.

Alas, my hopes for a tsunami of reform – while not altogether in vain – were far from realised. Now in 2014, as ambition and hope again escalate in the recycled world of climate change negotiations, like an undefeatable phoenix the plight of the world’s coasts and oceans must once again be thrust to the fore to ensure their centrality in the solution is not overlooked.

Key among the myriad of challenges facing the marine environment is the slow-onset phenomenon known as ocean acidification. As atmospheric carbon dioxide concentration climbs, ocean pH falls. It’s that simple. Falling pH in turn makes it harder for marine life to capture carbonates and fix calcium to build shells and skeletons. It may be a death sentence for many species, particularly those where calcification is a part of their early life cycle. The impacts of ocean acidification will be felt at the microscopic scale, e.g. calcifying plankton, through to the habitat scale, e.g. coral reefs. The implications for the marine food webs and the provision of ecosystem services are potentially catastrophic with extinctions in the next 50-200 years being a very realistic scenario.

Clearly, more and accelerated science is urgently needed. In this regard, I am pleased to report that the Environment Laboratories of the International Atomic Energy Agency (IAEA) in Monaco are making this issue a focus of their work, using for example, radio-isotopes of calcium to better understand the past, present and future impacts of ocean acidification. This includes observing physiological and ecological effects under different climate change scenarios. In an effort to improve collaboration and shared learning, the laboratories operate the Ocean Acidification International Coordination Centre (OA-ICC). This is currently funded by the Peaceful Uses Initiative of the IAEA; however the urgent need for expanded research, data generation and knowledge products far outweighs the resources that are currently available.

The challenge of addressing ocean acidification is a cross-cutting one, relevant to the three dimensions of the ongoing climate change negotiations: mitigation, adaptation, and loss and damage.

Read more here

National Climate Assessment Released

May 6th, 2014, National Climate Report Overview

Climate change, once considered an issue for a distant future, has moved firmly into the present. Corn producers in Iowa, oyster growers in Washington State, and maple syrup producers in Vermont are all observing climate-related changes that are outside of recent experience. So, too, are coastal planners in Florida, water managers in the arid Southwest, city dwellers from Phoenix to New York, and Native Peoples on tribal lands from Louisiana to Alaska. This National Climate Assessment concludes that the evidence of human-induced climate change continues to strengthen and that impacts are increasing across the country.

Americans are noticing changes all around them. Summers are longer and hotter, and extended periods of unusual heat last longer than any living American has ever experienced. Winters are generally shorter and warmer. Rain comes in heavier downpours. People are seeing changes in the length and severity of seasonal allergies, the plant varieties that thrive in their gardens, and the kinds of birds they see in any particular month in their neighborhoods.

Other changes are even more dramatic. Residents of some coastal cities see their streets flood more regularly during storms and high tides. Inland cities near large rivers also experience more flooding, especially in the Midwest and Northeast. Insurance rates are rising in some vulnerable locations, and insurance is no longer available in others. Hotter and drier weather and earlier snow melt mean that wildfires in the West start earlier in the spring, last later into the fall, and burn more acreage. In Arctic Alaska, the summer sea ice that once protected the coasts has receded, and autumn storms now cause more erosion, threatening many communities with relocation.

Scientists who study climate change confirm that these observations are consistent with significant changes in Earth’s climatic trends. Long-term, independent records from weather stations, satellites, ocean buoys, tide gauges, and many other data sources all confirm that our nation, like the rest of the world, is warming. Precipitation patterns are changing, sea level is rising, the oceans are becoming more acidic, and the frequency and intensity of some extreme weather events are increasing. Many lines of independent evidence demonstrate that the rapid warming of the past half-century is due primarily to human activities.

The observed warming and other climatic changes are triggering wide-ranging impacts in every region of our country and throughout our economy. Some of these changes can be beneficial over the short run, such as a longer growing season in some regions and a longer shipping season on the Great Lakes. But many more are detrimental, largely because our society and its infrastructure were designed for the climate that we have had, not the rapidly changing climate we now have and can expect in the future. In addition, climate change does not occur in isolation. Rather, it is superimposed on other stresses, which combine to create new challenges.

This National Climate Assessment collects, integrates, and assesses observations and research from around the country, helping us to see what is actually happening and understand what it means for our lives, our livelihoods, and our future. The report includes analyses of impacts on seven sectors – human health, water, energy, transportation, agriculture, forests, and ecosystems – and the interactions among sectors at the national level. The report also assesses key impacts on all U.S. regions: Northeast, Southeast and Caribbean, Midwest, Great Plains, Southwest, Northwest, Alaska, Hawai’i and Pacific Islands, as well as the country’s coastal areas, oceans, and marine resources.

Over recent decades, climate science has advanced significantly. Increased scrutiny has led to increased certainty that we are now seeing impacts associated with human-induced climate change. With each passing year, the accumulating evidence further expands our understanding and extends the record of observed trends in temperature, precipitation, sea level, ice mass, and many other variables recorded by a variety of measuring systems and analyzed by independent research groups from around the world. It is notable that as these data records have grown longer and climate models have become more comprehensive, earlier predictions have largely been confirmed. The only real surprises have been that some changes, such as sea level rise and Arctic sea ice decline, have outpaced earlier projections.

What is new over the last decade is that we know with increasing certainty that climate change is happening now. While scientists continue to refine projections of the future, observations unequivocally show that climate is changing and that the warming of the past 50 years is primarily due to human-induced emissions of heat-trapping gases. These emissions come mainly from burning coal, oil, and gas, with additional contributions from forest clearing and some agricultural practices.

Global climate is projected to continue to change over this century and beyond, but there is still time to act to limit the amount of change and the extent of damaging impacts.

This report documents the changes already observed and those projected for the future.

It is important that these findings and response options be shared broadly to inform citizens and communities across our nation. Climate change presents a major challenge for society. This report advances our understanding of that challenge and the need for the American people to prepare for and respond to its far-reaching implications.

Read the full report here

Sea Change: Pacific Ocean Takes Perilous Turn

By Craig Welch, The Seattle Times

Ocean acidification, the lesser-known twin of climate change, threatens to scramble marine life on a scale almost too big to fathom.

NORMANBY ISLAND, Papua New Guinea — Katharina Fabricius plunged from a dive boat into the Pacific Ocean of tomorrow.

She kicked through blue water until she spotted a ceramic tile attached to the bottom of a reef.

A year earlier, the ecologist from the Australian Institute of Marine Science had placed this small square near a fissure in the sea floor where gas bubbles up from the earth. She hoped the next generation of baby corals would settle on it and take root.

Fabricius yanked a knife from her ankle holster, unscrewed the plate and pulled it close. Even underwater the problem was clear. Tiles from healthy reefs nearby were covered with budding coral colonies in starbursts of red, yellow, pink and blue. This plate was coated with a filthy film of algae and fringed with hairy sprigs of seaweed.

Instead of a brilliant new coral reef, what sprouted here resembled a slimy lake bottom.

Isolating the cause was easy. Only one thing separated this spot from the lush tropical reefs a few hundred yards away.

Carbon dioxide.

Read More Here