US/NZ Host International Workshop on Ocean Acidification

August 27th, 2014  US Embassy Press Release

(Note from GOH: our staff member Todd Capson is a participant in this workshop and in article)

An International Workshop on Ocean Acidification: State-of-the-Science Considerations for Small Island Developing States

August 28-29, 2014

Apia, Samoa

Jointly hosted by New Zealand and the United States in partnership with the Secretariat of the Pacific Regional Environment Programme

Parallel Event of the UN Third International Conference on Small Island Developing States

Leading international ocean scientists and policy experts are tomorrow gathering in Apia, Samoa to better understand the threat ocean acidification poses to Pacific Island nations.

The workshop, co-hosted by the United States and New Zealand Governments in partnership with the Secretariat of the Pacific Regional Environment Programme, will be held on the margins of the Small Island Developing States Conference, on the 28-29 August.

The workshop participants, who hail from the nations attending the Small Island Developing States conference, will discuss best practices, solutions and ocean acidification monitoring programmes for island nations to implement.

US Embassy Chargé d’Affaires, a.i. Marie Damour said US Secretary of State John Kerry’s ‘Our Ocean’ conference in June, highlighted ocean acidification as a key threat to the world’s oceans.

“The workshop, in addition to coming up with practical solutions for the challenge of ocean acidification in the Pacific, showcases the strong partnership between the US and New Zealand on oceans and science issues,” she said.

“As Minister Steven Joyce highlighted this week, the United States is New Zealand’s most significant research and technology partner,” she said.

This week’s Ocean Acidification workshop follows on from a workshop in Nelson in December 2013 which identified ways to future proof New Zealand’s $350 aquaculture industry. It was held in partnership between the US Department of State, the New Zealand Government, the National Institute of Water and Atmospheric Research, the Gordon & Betty Moore Foundation, Sanford Limited and the Cawthron Institute.

This week’s workshop, entitled ‘An International Workshop on Ocean Acidification: State-of-the-Science Considerations for Small Island Developing States’, was officially announced by US and New Zealand at the 45th Pacific Islands Forum in Palau held this year in August.

Speaking at the event will be Dr Todd Capson, an American oceans scientist and Science & Policy Advisor to the Sustainable Fisheries Partnership in Washington DC who also co-organised the Nelson event.

The organisations co-sponsoring the Ocean Acidification workshop are the US Department of State, the US National Oceanic and Atmospheric Administration, the New Zealand Ministry of Foreign Affairs and Trade, the New Zealand National Institute of Water and Atmospheric Research, and the Secretariat of the Pacific Regional Environment Programme.

Read more here

Scientists Warn of Dangers from Ocean Acidification

Device on Ferry Hull to Aid Ocean Acidification Research

June 16th, 2014, by Charlie Bermant, The Seattle Times

A device attached to the hull of a Port Townsend-Coupeville ferry will help scientists collect data on low-oxygen water and ocean acidification

PORT TOWNSEND — The state ferries system has attached a device to the hull of the MV Salish on the Port Townsend-Coupeville route to provide data on low-oxygen water and ocean acidification from Admiralty Inlet.

“This will help us understand Puget Sound much better,” said Sandy Howard, a Department of Ecology spokesperson.

“It provides a new piece of information that we never had before and will allow us to monitor current, velocity, temperature and the flow of fresh and salt water on a long-term basis.”

During a recent servicing, Washington State Ferries crews attached the sensor, an acoustic Doppler current profiler, to the bottom of the Salish, which makes 11 daily crossings between Port Townsend and Coupeville on Whidbey Island.

The sensor gathers data during the crossings of the area known as Admiralty Inlet, or Admiralty Reach, the gateway to the Puget Sound, where salt and fresh water merges.

The project is a partnership among Ecology, Washington State Ferries and the University of Washington.

It is supported by a $261,000 grant from the Environmental Protection Agency.

The rudder-shaped device, which extends about 40 inches from the middle of the hull, both stores and transmits data, according to Cotty Fay, chief naval architect and manager of vessel design for the ferry system.

The device is expected to last at least five years and will cause the ferry to have a “very small” slowdown of about 0.5 percent, Fay said.

“Every tide is different than the one before,” Fay said. “Over a long period of time, we will get a profile of how the water moves in and out of Puget Sound.”

Read more here

How to Battle Ocean Acidification

June 16th, By John Upton, Pacific Standard (psmag.com)

It’s a fearsome problem. But we’re not just watching helplessly.

Shellfish are dying by the boatload, their tiny homes burned from their flesh by acid. Billions of farmed specimens have already succumbed to the problem, which is caused when carbon dioxide dissolves and reacts with water, producing carbonic acid.

When ocean life starts to resemble battery gizzards, how can humans possibly respond?

Immediately curbing the global fossil fuel appetite and allowing carbon dioxide-drinking forests to regrow would be obvious steps. But they wouldn’t be enough. Oceanic pH levels are already 0.1 lower on average than before the Industrial Revolution, and they will continue to decline as our carbon dioxide pollution lingersand balloons.

In a recent BioScience paper, researchers from coastal American states summarized what we know about ocean acidification, and described some possible remedies.

Chart: Bioscience

Chart: Bioscience

As John Kerry kicks off two days of ocean acidification workshops, here’s our summary of the scientists’ overview:

WHAT WE KNOW

  • Acid rain can affect ocean pH, but only fleetingly, especially when compared with the effects of carbon dioxide pollution.
  • Studies of naturally acidified waters, like those near CO2 vents, suggest that acidification will depress species diversity; algae will continue to take over.
  • Farm runoff and fossil fuel pollution can worsen the problem in coastal areas. The nitrogen-rich pollution fertilizes algae. That initially reduces CO2 levels, but the plankton is eaten after it dies by CO2-exhaling bacteria. This type of pollution appears to be worsening the acidification of the Gulf of Mexico.
  • Strong upwelling, in which winds churn over the ocean and bring nutrients and dissolved carbon dioxide up from the depths, exacerbate local acidity levels in some regions. In the upwell-affected Pacific Northwest, climate change appears to be leading to stronger upwelling.
  • Shellfish are “highly vulnerable” to ocean acidification. Some marine plants may benefit. Fish could suffer from neurological changes that affect their behavior. Coral reefs are also being damaged.
  • Declining mollusk farm production could cost the world more than $100 billion by 2100.
  • Marine plants can help buffer rising acidity. Floridian seagrass meadows appear to be protecting nearby coral.

WHAT’S BEING DONE

  • The National Oceanic and Atmospheric Administration created an ocean acidification program in 2012. It’s monitoring impacts, coordinating education programs, and developing adaptation strategies.
  • American experts are talking less these days about ocean acidification as a universal problem, and becoming more focused on local and regional solutions.
  • Alaska, Maine, Washington, California, and Oregon have initiated studies and working groups.

WHAT MORE COULD BE DONE

  • The EPA could enforce the Clean Water Act to protect waterways from pollution that causes acidification.
  • Other coastal states could model new working groups on the Washington State Blue Ribbon Panel, which helped form the West Coast Ocean Acidification and Hypoxia Science Panel.
  • Incorporate ocean acidification threats into states’ coastal zone management plans.
  • Expand the network of monitors that measure acidity levels, providing researchers and shellfish farmers with real-time and long-term pH data.
  • Expand marine protections to reduce overfishing and improve biodiversity, which can allow wildlife to evolve natural defenses.

Source: http://www.psmag.com/navigation/nature-and-technology/how-battle-ocean-acidification-83489/

How Will Cod React to Global Warming? Researchers Subject Fish to High CO2 Levels to Find Out

May 8th, 2014, By Eva Tallaksen, undercurrentnews.com

cod in high co2Scientists in Tromso, Norway, are exposing cod broodstock to high CO2 to find out how the fish will cope as the seas get warmer, and more acidic.

“The idea is to find out, how will ocean acidification affect aquaculture and wild fish?” said Christopher Bridges, zoology professor at the university of Dusseldorf.

It is hoped larvae scooped from five tanks at Nofima’s national cod breeding center will soon yield some clues.

Each tank contained 60 cod broodstock averaging 3-5 kilos in size, exposed to different levels of temperatures and acidity. The fish spawned March and April, and their larvae, which hatched in the past two weeks, are currently being tested.

“The key aspect will be to look at the larvae’s survival rate,” said Bridges.

If global warming continues as some scientists think, the oceans’ CO2 levels could reach 1,000 to 1,200 ppm (parts per million) by 2100, up from just under 400ppm today.

That would take the seas’ pH level down to 7.8, from 8.1 today.

Most the research into the seas’ growing acidity has focused on the impact on fish eggs or larvae, or on habitats. But few have so far focused on its impact on broodstock, said Bridges.

Bridges is one of the scientists involved in the project, which is led by the publicly-funded German Bioacid initiative. Cooperating in the project are Germany’s Geomar and Alfred Wegner Institute, working in Norway under the EU FP7 support project Aquaexcel using the facilities of Nofima.

In two of the tanks, the cod were kept at normal acidity levels (400ppm), but one tank had a temperature of 5 degrees Celcius, and the other 10 degrees. In two other tanks, the fish were exposed to CO2 levels of 1,200 ppm, again with one tank at 5 degrees and the other at 10 degrees.

These four tanks all used broodstock from farmed fish, bred by Nofima’s center. A fifth tank was filled with fish from the wild, but these were caught too late to be used for the experiment.

Read more here

Desperately Seeking a Rapid-Onset Response to a Slow-Onset Event – The Case of Ocean Acidification

International Institute for Sustainable Development. May 19th, 2014. By David Osborn, Director, Environment Laboratory, IAEA


I last wrote an article for this bulletin in July 2009 (Guest article #17). On that occasion, I reflected on the immense expectations surrounding the climate negotiations in Copenhagen and the need to ‘Seal the Deal.’ I can see many of you holding back a wry smile as you remember that ambitious campaign so soon forgotten.

Back in those heady days of hope and anticipation, amid all the noise and distraction, I highlighted the pressing need to not forget the changing ocean. I invited governments to acknowledge the impact of climate change on the ocean and find ways to proactively ensure its resilience. Longing for a rapid onset of reform, I called for an ‘ocean of change’ that would finally recognise the centrality and criticality of ocean health to both mitigating and adapting to the effects of climate change.

Alas, my hopes for a tsunami of reform – while not altogether in vain – were far from realised. Now in 2014, as ambition and hope again escalate in the recycled world of climate change negotiations, like an undefeatable phoenix the plight of the world’s coasts and oceans must once again be thrust to the fore to ensure their centrality in the solution is not overlooked.

Key among the myriad of challenges facing the marine environment is the slow-onset phenomenon known as ocean acidification. As atmospheric carbon dioxide concentration climbs, ocean pH falls. It’s that simple. Falling pH in turn makes it harder for marine life to capture carbonates and fix calcium to build shells and skeletons. It may be a death sentence for many species, particularly those where calcification is a part of their early life cycle. The impacts of ocean acidification will be felt at the microscopic scale, e.g. calcifying plankton, through to the habitat scale, e.g. coral reefs. The implications for the marine food webs and the provision of ecosystem services are potentially catastrophic with extinctions in the next 50-200 years being a very realistic scenario.

Clearly, more and accelerated science is urgently needed. In this regard, I am pleased to report that the Environment Laboratories of the International Atomic Energy Agency (IAEA) in Monaco are making this issue a focus of their work, using for example, radio-isotopes of calcium to better understand the past, present and future impacts of ocean acidification. This includes observing physiological and ecological effects under different climate change scenarios. In an effort to improve collaboration and shared learning, the laboratories operate the Ocean Acidification International Coordination Centre (OA-ICC). This is currently funded by the Peaceful Uses Initiative of the IAEA; however the urgent need for expanded research, data generation and knowledge products far outweighs the resources that are currently available.

The challenge of addressing ocean acidification is a cross-cutting one, relevant to the three dimensions of the ongoing climate change negotiations: mitigation, adaptation, and loss and damage.

Read more here

Workshop Offers Look at Grays Harbor of the Future

The Daily World, April 10th, 2014. By Brionna Friedrich

A workshop Tuesday on ocean acidification and rising sea levels offered a peek into Grays Harbor’s potential future, and aimed to start a conversation about turning the challenges of climate change into opportunities.

Brad Warren, director of Global Ocean Health, said he hopes to change the way people think about climate change.

“The language is loss, ‘We’re going to lose this much land,’ ” Warren said. “Well, if you look at this from the ocean point of view, which is where a fair number of people around here make a living, there’s going to be a fair number of opportunities there.”

That change may prove to be a challenge of its own. About 30 people attended the workshop, mostly agency officials joined by a few interested residents and local policymakers. Nearly all had ideas, concerns and questions about climate change, but few were ready to focus on the suggestion of creating new industries, like harvesting underwater plants.

“It’s a beginning. And that’s probably enough,” Warren said. “It will be really interesting to come back and track this conversation as it matures over time. I think it’s really clear that people are ready to think hard about sea level rise, and that’s pretty complicated by itself. And there’s a lot of resistance to thinking about how it interacts with another complicated process” like ocean acidification.

Todd Sandell of the Wild Fish Conservancy offered one tool in increasing that understanding locally. He and Andrew McAninch were initially only researching data on juvenile salmon habitat in the Grays Harbor area.

“It became rapidly apparent … that the elephant in the room that people weren’t really talking about is sea level rise,” Sandell said. “That’s going to undermine a lot of the work that’s been done over past decades, putting in tide gates and things like that.”

In 2012, the conservancy used lidar data from the Federal Emergency Management Agency to build a better model of what climate change could look like on the Harbor.

Sandell and McAninch modeled out to 2100. Compared to Grays Harbor in 1981, when modeling started, the 2100 Grays Harbor will lose 83 percent of its mud flats, have 2.4 times the salt marsh and six times as much irregularly flooded marsh area. Traditional marsh will be 26 times larger.

Forested swamp land showed a 97 percent reduction as a result of sea level rise, Sandell said. Goose and Sand islands would be completely underwater.

Sandell said as salt water penetrates deeper and deeper into the Harbor and into the sloughs, trees may die because they can’t tolerate the salinity. That may lead to further collapse during flooding.

In Willapa Harbor, Sandell said the numerous dikes might lead to good habitats for various sea creatures that like shallow water for about 25 years. After that, he said, the dikes will create more problems than they solve.

“That’s one of the reasons you can’t just build a bunch of dikes and say, ‘We won’t move an inch,’ ” Sandell said. “I wouldn’t want to fight the ocean that much.”

One of the challenges in getting a clear picture of what the Twin Harbors might look like with rising oceans is limited by data. Scientists don’t have a clear picture of what the underwater landscape looks like.

Sandell said the model they used has a vertical error of one to three meters, meaning the elevations they used for their modeling could have some significant variation from where the ground actually is. That translates to some potentially significant differences in the horizontal borders they project. Still, it’s a significant improvement in accuracy over previous models.

Getting clearer and clearer pictures of what’s happening to the habitat around us is the only way we’ll ever start to cope with the many and varied impacts of climate change, Warren said.

“I thought a really important thing somebody brought up today is that the perception of urgency is not really there, around either sea level rise or ocean acidification,” Warren said. “In order to get county governments to address this issue, when they can’t see their own interests at risk now, it’s a really important challenge. I would argue that the challenge there is not that there is no change affecting their interests, nor that that change is not urgent. It’s that we don’t have the observing systems in place to be able to see what’s happening to us.”

Coastline changes may actually present more opportunity for burying carbon.

About 0.5 percent of ocean area roughly matches the carbon absorption of all the world’s forests. Salt marsh buries 10 times as much carbon per acre every year than a Brazilian rainforest, Warren said.

In Asia, harvesting underwater plants that thrive in acidic water is already a $7 billion per year industry, cleaning the water at the same time.

With better information, policy makers will be able to take advantage of opportunities like that, using better planning for coastlines and flood plains.

“People are really intelligent when they can see what’s happening to them. We’re not very intelligent when we can’t see,” he added.

Source link

Workshop Takes a Practical, Proactive Look at Ocean Acidification

The Daily World, April 5th, 2014. By Brionna Friedrich

The frightening impacts of a changing climate are sometimes unavoidable, but an upcoming workshop takes a proactive look at how to cope with changing coastlines and ocean chemistry.

“If we can snatch opportunity out of the jaws of climate change, we’ll be doing a smart thing,” said Eric Swenson, communications and outreach director of Global Ocean Health. “That’s a real message I hope resonates and people can act on. Can we benefit from the coming circumstances?”

The non-profit initiative focuses on the impacts of ocean acidification, the absorption of carbon dioxide into ocean waters, which is already impacting local industries like shellfish growers.

It specifically works with seafood producers and coastal communities on options for adaptation.

The free workshop, set for Tuesday in the Rotary Log Pavilion in Aberdeen, will connect climate change and ocean acidification experts with local and regional policymakers and the general public.

The morning session, from 9 a.m. to noon, will feature speakers on changing aquaculture and how marine plants and grasses can help absorb CO2.

Stephen Crooks, climate change program director for Environmental Services Associates, has recently briefed the White House and the United Nations on the impacts of estuary restoration, Swenson said. “Now he’ll be doing a briefing for the Washington coast in Aberdeen,” he said. “We’ve got some actual world-class folks on the agenda.”

Marine and coastal vegetation provides opportunities, from contributions to overall estuary health to a possible commercial enterprise, harvesting food and biofuel.

“This isn’t pie-in-the-sky, people are doing this and making money at it in Asia,” Swenson said.

It could also provide a tool for shellfish farmers. Acidic ocean waters can decimate delicate oyster larvae.

“If you can just move the meter a point or two in some key areas, it’s the difference between life and death,” Swenson said.

“There’s a fair amount of research that shows that when shellfish and seagrasses co-exist — the right kind of seagrasses — it’s to the benefit of both,” he continued.

“We will be looking at how plants sequester the carbon. The salt marsh plants, for instance, do a job that’s about five times as effective as a tropical forest, so photosynthesis can really be made to work for us.”

A free lunch will be offered before the afternoon session, from 1 p.m. to 4 p.m., which will discuss local planning and policy processes that can help in preparation for a changing coastline.

“We’re bringing (ocean acidificaton) into a wider context of what the coast is going to look at in 20, 30 or 40 or more years, and it’s going to be very different than what it is now,” Swenson said. “By trying to consider what the coastline is going to look like with the higher sea, we may be able to shelter shellfish, we may be able to protect our estuaries, which are such nurseries for a variety of sea life.”

“If we learn to plan for it well, sea level rise might be more than just a problem — which it certainly will be — but an opportunity,” Global Ocean Health Director Brad Warren wrote in a press release. “Higher water will make more room for estuarine ecosystems that can sometimes chemically shelter vulnerable larvae from corrosive waters. It won’t be a smooth transition, but sea level rise may open up new areas for farming shellfish and marketable marine macroalgae. It will increase coastal habitats that support hunting and fishing and expand the nursery grounds that support most of the world’s seafood supply.”

Some basic understanding of ocean acidification will help for those who attend the workshop, Swenson said, but scientific expertise isn’t a requirement.

“I think people who have at least a fundamental grasp of what we’re talking about will be better served by the meeting, but it is designed to be open to the public, free of charge, with that free lunch included, in an attempt to draw in people who want to learn more about this,” Swenson said.

The Rotary Log Pavilion is located at 1401 Sargent Blvd. in Aberdeen. No registration is required for the workshop.

Source link

National Climate Assessment Released

May 6th, 2014, National Climate Report Overview

Climate change, once considered an issue for a distant future, has moved firmly into the present. Corn producers in Iowa, oyster growers in Washington State, and maple syrup producers in Vermont are all observing climate-related changes that are outside of recent experience. So, too, are coastal planners in Florida, water managers in the arid Southwest, city dwellers from Phoenix to New York, and Native Peoples on tribal lands from Louisiana to Alaska. This National Climate Assessment concludes that the evidence of human-induced climate change continues to strengthen and that impacts are increasing across the country.

Americans are noticing changes all around them. Summers are longer and hotter, and extended periods of unusual heat last longer than any living American has ever experienced. Winters are generally shorter and warmer. Rain comes in heavier downpours. People are seeing changes in the length and severity of seasonal allergies, the plant varieties that thrive in their gardens, and the kinds of birds they see in any particular month in their neighborhoods.

Other changes are even more dramatic. Residents of some coastal cities see their streets flood more regularly during storms and high tides. Inland cities near large rivers also experience more flooding, especially in the Midwest and Northeast. Insurance rates are rising in some vulnerable locations, and insurance is no longer available in others. Hotter and drier weather and earlier snow melt mean that wildfires in the West start earlier in the spring, last later into the fall, and burn more acreage. In Arctic Alaska, the summer sea ice that once protected the coasts has receded, and autumn storms now cause more erosion, threatening many communities with relocation.

Scientists who study climate change confirm that these observations are consistent with significant changes in Earth’s climatic trends. Long-term, independent records from weather stations, satellites, ocean buoys, tide gauges, and many other data sources all confirm that our nation, like the rest of the world, is warming. Precipitation patterns are changing, sea level is rising, the oceans are becoming more acidic, and the frequency and intensity of some extreme weather events are increasing. Many lines of independent evidence demonstrate that the rapid warming of the past half-century is due primarily to human activities.

The observed warming and other climatic changes are triggering wide-ranging impacts in every region of our country and throughout our economy. Some of these changes can be beneficial over the short run, such as a longer growing season in some regions and a longer shipping season on the Great Lakes. But many more are detrimental, largely because our society and its infrastructure were designed for the climate that we have had, not the rapidly changing climate we now have and can expect in the future. In addition, climate change does not occur in isolation. Rather, it is superimposed on other stresses, which combine to create new challenges.

This National Climate Assessment collects, integrates, and assesses observations and research from around the country, helping us to see what is actually happening and understand what it means for our lives, our livelihoods, and our future. The report includes analyses of impacts on seven sectors – human health, water, energy, transportation, agriculture, forests, and ecosystems – and the interactions among sectors at the national level. The report also assesses key impacts on all U.S. regions: Northeast, Southeast and Caribbean, Midwest, Great Plains, Southwest, Northwest, Alaska, Hawai’i and Pacific Islands, as well as the country’s coastal areas, oceans, and marine resources.

Over recent decades, climate science has advanced significantly. Increased scrutiny has led to increased certainty that we are now seeing impacts associated with human-induced climate change. With each passing year, the accumulating evidence further expands our understanding and extends the record of observed trends in temperature, precipitation, sea level, ice mass, and many other variables recorded by a variety of measuring systems and analyzed by independent research groups from around the world. It is notable that as these data records have grown longer and climate models have become more comprehensive, earlier predictions have largely been confirmed. The only real surprises have been that some changes, such as sea level rise and Arctic sea ice decline, have outpaced earlier projections.

What is new over the last decade is that we know with increasing certainty that climate change is happening now. While scientists continue to refine projections of the future, observations unequivocally show that climate is changing and that the warming of the past 50 years is primarily due to human-induced emissions of heat-trapping gases. These emissions come mainly from burning coal, oil, and gas, with additional contributions from forest clearing and some agricultural practices.

Global climate is projected to continue to change over this century and beyond, but there is still time to act to limit the amount of change and the extent of damaging impacts.

This report documents the changes already observed and those projected for the future.

It is important that these findings and response options be shared broadly to inform citizens and communities across our nation. Climate change presents a major challenge for society. This report advances our understanding of that challenge and the need for the American people to prepare for and respond to its far-reaching implications.

Read the full report here

New Ocean Acidification Study to Launch in Prince William Sound

AOOS.org, By Darcy Dugan, April 29th, 2014

Beginning this week, two surface wave gliders, resembling yellow surfboards, will be cruising around Prince William Sound as part of a five-month monitoring program to measure ocean acidification. Simultaneously, state-of-the-art instrumentation installed on a glacier tour boat will monitor glacial runoff while an underwater autonomous glider will patrol beneath the surface looking for plumes of water that could be harmful to some species.

A remote-controlled glider, similar to the one shown here, will measure ocean acidification in Prince William Sound from May to September. Photo credit: Richard Feely, NOAA/PMEL

A remote-controlled glider, similar to the one shown here, will measure ocean acidification in Prince William Sound from May to September. Photo credit: Richard Feely, NOAA/PMEL

The project, funded mostly by the National Oceanic and Atmospheric Administration’s Ocean Acidification Program, is led by Dr. Jeremy Mathis of the Pacific Marine Environmental Laboratory and Dr. Wiley Evans from the University of Alaska Fairbanks (UAF) Ocean Acidification Research Center in partnership with the Alaska Ocean Observing System (AOOS).

Scientists estimate that the ocean is 25% more acidic today than it was 300 years ago, largely due to increasing levels of atmospheric carbon dioxide (CO2) from burning fossil fuels and changes in land use. Almost half of the CO2 emitted remains in the atmosphere, with the land and ocean absorbing the rest. When the ocean absorbs CO2, its pH balance changes through a process called ocean acidification. Because cold water can absorb more CO2 than warm water, acidification can disproportionately impact coastal regions around Alaska.

Recent publications by Dr. Mathis and Dr. Evans have shown that the process of ocean acidification may be worsened around tidewater glaciers due to the freshwater melt plumes that occur is summer and fall. “The glacier melt plumes have some really unique chemistry that can exacerbate ocean acidification and impact the environment in Prince William Sound and out into the Gulf of Alaska,” Mathis said. “Our goal is to use the latest technology to find out what’s happening so we can communicate that to Alaska residents and stakeholders.”

According to AOOS Executive Director Molly McCammon, the research effort builds upon the partnership developed with the OA Research Center at UAF to support statewide OA monitoring. The consortium supports five buoys around the State, as well as twice a year sampling in the Gulf of Alaska, and development of a Gulf of Alaska OA forecast model. Data from the monitoring efforts will be available on both the AOOS website and the UAF’s OA Research Center website. “With this new effort, we’re increasing our ability to view and understand Alaska’s oceans in four dimensions – two dimension space, depth and time.”

When completed in early September, the study will have provided the longest continuous observations of ocean acidification in Alaska to date. “We are very proud to have the opportunity to partner with AOOS and be the leaders in glider technology in Alaska,” said Mathis. “This work could be a game-changer in our understanding of how ocean acidification will impact our state.”