Scientists Embark On West Coast Ocean Acidification Mission

July 25, 2013 | KCTS9

shellfish

The shellfish industry, which injects about $111 million each year into the Pacific Northwest’s economy, is particularly at risk from the threat of ocean acidification. | credit: Katie Campbell |

SEATTLE — On Monday scientists from the National Oceanic and Atmospheric Administration will begin a one-month U.S. West Coast expedition to investigate ocean acidification, an issue that poses a serious threat to the Pacific Northwest’s shellfish industry.

“We will for the first time not only study the chemistry of acidification, but also study the biological impacts on the marine ecosystems in the open ocean,” says Richard A. Feely, a scientist from NOAA’s Pacific Marine Environmental Research Laboratory in Seattle. Feely is co-chief of the mission.

Over the past 30 years, oceanographers like Feely have found that the burning of fossil fuels has released about 2 trillion tons of carbon dioxide into the atmosphere. About a quarter of that has been absorbed by the oceans, Feely says. Carbon dioxide reacts with seawater to form carbonic acid and that acid can corrode the shells of calcifying organisms including oysters and clams.

This upcoming expedition follows the same path taken during a similar survey in 2007, stretching from the Canadian border to the Mexican border. That earlier expedition was the first survey to show that the West Coast of North America is a hot spot for ocean acidification.

Read more here

Maine Confronts a Sea Change

July 03, 2013 18:55
By Brad Warren
 
Bill Mook suspected trouble in the water when he first noticed plankton blooms dwindling, raising questions about the future supply of natural feed for the clams and oysters he raises in a tidal reach of Maine’s Damariscotta River.
 
Over the last decade he witnessed an increase in intense storms that brought torrential rains. Mook also spotted a pattern inside his hatchery, which spawns and produces oyster “seed” for his own and other farms in the region. After heavy rains, larvae and their tank-raised microalgae feed became harder to grow. Mook saw his tiny, new-hatched oysters circling at the bottom of the tanks instead of swimming actively through the water column as usual.
 
This was the same larval behavior reported by West Coast oyster hatchery managers when their larvae began dying in increasingly corrosive water, threatening “seed” supplies. The worst-hit animals failed to develop properly or even to “set”—a crucial step in which bivalves pick a spot to settle down and grow up.
 
The veteran producer began speaking out to other growers, fishermen and resources managers. He called for investigation of changes in seawater chemistry that may soon pack the kind of wallop that nearly wiped out seed supplies for West Coast shellfish farmers in the late 2000s.
 
The West Coast industry managed to temporarily avert that crisis by partnering with scientists to take careful measurements and devise adaptive maneuvers. But the episode generated lessons that are rippling through the world’s seafood industry. And the underlying threat is growing. Scientists have firmly linked the Pacific Coast oyster crisis to ocean acidification, a consequence of industrial society’s swelling emissions of carbon dioxide (CO2) from burning coal, oil and gas. 
 
If similar effects are showing up in Maine, can the state meet the challenge?.
 
On the West Coast, the effort to detect and dodge corrosive water did more than protect growers. It revealed a gathering danger to seafood supplies, jobs, and coastal communities. It also enabled Washington state—the nation’s largest farmed shellfish producer—to launch a comprehensive effort to understand this threat and begin defending its fisheries and coastal waters from souring seawater. I’m proud to play a part in this work.
 
Just over a year ago shellfish growers and tribal leaders persuaded Washington Gov. Christine Gregoire to create a Blue Ribbon Panel on Ocean Acidification, based on a proposal I drafted. Gov. Gregoire convened this bipartisan panel and tasked it to recommend strategies for the state to understand, adapt to, mitigate and remediate damage from acidification.
 
When the panel completed its report in November 2012, Gov. Gregoire promptly instructed state agencies to implement its recommendations. She reallocated $3.3 million in her budget to do the job, including funds for a new ocean acidification research center.
 
Washington’s initiative is the first of its kind, but it won’t be the last. Fishermen, growers, scientists, conservationists and coastal leaders are enlisting state governments to help understand the impacts of changing ocean chemistry and develop tactics to sustain seafood production and marine ecosystems.
 
Mook reckons it is time for Maine to devise its own strategy. “We need to get people who are stakeholders and experts and form some kind of group,” he says.
 
With its $330 million lobster industry, Maine has thousands of jobs at stake. Recent research has peeled back the impression that lobsters might be immune; preliminary findings in Maine and Nova Scotia show reduced growth and delayed development in high-CO2 water. Meanwhile Maine’s clam industry faces both an invasion of destructive green crabs and acidification that weakens shells, making the mollusks more vulnerable to predators.
 
As Maine considers its options, one lesoson from the West Coast can save a lot of trouble and money: “Turn on the lights.” That’s how Mark Wiegardt of Oregon’s Whiskey Creek Shellfish hatchery described the results when scientists from Oregon State University helped his team to measure and document effects of souring water on fresh-spawned larvae. “We wouldn’t be in business without it,” he says. One effective tactic: hatchery managers pump in seawater during sunny afternoons. By that time of day, the monitoring data show the water is “sweeter.” Whiskey Creek managers think that sun-loving seagrass near their intake soaks up enough CO2 to protect vulnerable larvae
 
To fix trouble, you need to see it. That’s why in Maine, my program is supporting research to help validate preliminary findings on acidification impacts on lobsters and clams. We hope these efforts can help Maine’s industry and policy leaders stave off future harm.

Ocean Acidification Linked to Larval Oyster Failure

ScienceDaily (Apr. 11, 2012) — Researchers at Oregon State University have definitively linked an increase in ocean acidification to the collapse of oyster seed production at a commercial oyster hatchery in Oregon, where larval growth had declined to a level considered by the owners to be “non-economically viable.”

A study by the researchers found that elevated seawater carbon dioxide (CO2) levels, resulting in more corrosive ocean water, inhibited the larval oysters from developing their shells and growing at a pace that would make commercial production cost-effective. As atmospheric CO2 levels continue to rise, this may serve as the proverbial canary in the coal mine for other ocean acidification impacts on shellfish, the scientists say.

Click here to read more

A screen covered with oyster larvae, taken in 2007 at the Whiskey Creek Shellfish Hatchery near Netarts Bay, Ore. A 2012 study has found that Increasingly acidic ocean water is preventing larvae from developing shells. (Credit: Lynn Ketchum, Oregon State University)

What’s an Ocean Worth?

 

If you like oysters, it is time to pay attention to what is happening in Oregon. And even if you don’t like them, but care about the global food web that allows oysters to grow, reproduce and thrive, what’s happening Oregon should give you pause.

Ocean acidification, a consequence of the oceans being overloaded with carbon dioxide from human fossil fuel use, has been shown by a group of researchers to hamper the development of larval oysters at a hatchery on the Oregon coast. After years of suspicion, this was the smoking gun demonstrating that acidification has real damaging effects on commercial fisheries and that they are happening not 100 years from now but as we speak.

Scientists have been long able to demonstrate in the lab and on paper why this would be so. In the absence of hard evidence from the field, however, they have been exceptionally careful to distinguish what they know from what they suspect. But now it is folly to assume that this problem is limited to one small stretch of Pacific Northwest coastline.

As an indictment of our failure to wean ourselves off oil and coal, this is more fuel for the fire. More importantly, this news will help people understand that there is a hard dollar cost to misusing the oceans. Indeed there is tremendous financial incentive to leaving at least parts of it alone.

My job is lucky enough to come with an office that looks over a lovely marine reserve in the Pacific Ocean whose boundaries recently expanded as part of a revision of California Marine Protected Areas. Of course, this expansion didn’t happen without controversy. There was a predictable hue and cry from sportfishers and commercial fishers who claimed they were being physically separated from their livelihood by a line drawn in the water.

But the facts don’t necessarily support that. Fishermen in Baja California, Mexico decided more than a decade ago to create a marine reserve and make themselves the enforcers of its boundaries. The region they protect is now one of the biologically richest places in Mexico and the subsistence fishermen in Cabo Pulmo no longer have to worry about feeding themselves. California now has a chance to replicate that experience.

Separately a group of researchers writing for the Stockholm Environment Institute put an especially fine point on the argument against exploiting the oceans unsustainably. They calculated a cost savings of more than $1 trillion per year by 2100 if a course of aggressive greenhouse gas emissions reduction is pursued versus our current negligence, often labeled “business-as-usual.” It is a brave attempt to derive a hard dollar figure using extremely nebulous variables. Nonetheless they make a good argument that their estimate is a conservative one.

It is frustratingly naïve to believe that the benefits of offshore oil exploration (or terrestrial, for that matter) automatically justify the costs. The same can be said for corporate farming that routes tons of fertilizer and pesticides to the oceans. And the same is true for largely uncontrolled disposal of pharmaceutical products and plastics. It is naïve because even the most educated experts do not yet even know the full costs. The oyster industry in Oregon affected by ocean acidification is worth about $278 million, a pittance in a world where a single oilrig can cost $5 billion. On the other hand, that industry is everything to the people who rely on that fishery and a source of great pleasure to the consumers it serves. As if that is not enough to make us think, here is a final thought: The acidification brought on by the past 150 years or so of fossil fuel use will require more than 1,000 years to reverse.

The ocean is large and opaque. It is an act of irresponsible faith to think that impenetrable blue mass is big enough to absorb all our sins without consequence. We need to finish the work of realistically assessing the ocean’s value, and cherish it accordingly.

Tony Haymet, PhD, is director of Scripps Institution of Oceanography in La Jolla, California, and formerly Chief of Marine & Atmospheric Research at CSIRO Australia.

© Copyright (c) The Vancouver Sun

Marine Life on a Warming Planet

Since the beginning of the industrial era, humans have pumped increasing amounts of carbon dioxide into the atmosphere. This has led not only to a warmer climate but also to significant changes in the chemistry of the oceans, which have long acted as a sink for carbon emissions but are being asked to absorb more than they can handle. The result is ocean acidification: increasingly corrosive seawater that has already ruined many coral reefs and over time could threaten the entire marine food chain.

The State of Washington is now trying to tackle the problem in new and inventive ways. It has good reason to worry. Its economically important aquaculture industry specializes in shellfish, especially oysters. Shellfish are highly vulnerable to increased acidity, which kills them by preventing them from creating or maintaining their shells. Washington’s coastal waters are also polluted by urban and farm runoff, as well as an unusual regional threat: wind patterns that cause the upwelling of deep, nutrient-rich ocean currents loaded with carbon dioxide.

Read More