Washington’s Promising Pollution Story Starts With Oysters And Ends With Victory

ThinkProgress.com, by Natasha Geiling

Oct 28th, 2015

When Alan Barton first arrived at Whiskey Creek Shellfish Hatchery in 2007, he wasn’t expecting to stay very long. The hatchery — the second-largest in the United States — was in trouble, suffering from historically high mortality rates for their microscopic oyster larvae. But Barton knew that in the oyster industry, trouble is just another part of the job.

As manager of the oyster breeding program at Oregon State University, he had already helped one oyster larvae breeding operation navigate through some tough years in 2005, when a bacterial infection appeared to be causing problems for their seeds. To combat the issue, he had created a treatment system that could remove vibrio tubiashii, an infamous killer in the oyster industry, from the water.

Barton made the winding two-hour drive up the Oregon coast from Newport to Netarts, thinking his machines could easily solve whatever was plaguing Whiskey Creek. But when Barton’s $180,000 machine turned on, nothing changed. The hatchery was still suffering massive larvae mortality — months where nearly every one of the billions of tiny larvae housed in the hatchery’s vast network died before it could reach maturity.

Two-hundred miles up the coast in Shelton, Washington, Bill Dewey was also stumped. As director of public affairs for Taylor Shellfish, the country’s largest producer of farmed shellfish, he couldn’t figure out what was causing the hatchery’s tiny larvae to die in huge numbers. He knew aboutvibrio tubiashii, so when the die-offs began, Dewey called Barton and asked if they could install his machines at Taylor Shellfish’s own hatchery in the Puget Sound. And like at Whiskey Creek, the machines did little to stop the mysterious waves of death that were consuming the hatchery’s oyster larvae.

Back in Oregon, a National Oceanic and Atmospheric Administration (NOAA)-vessel rocked by persistent summer winds was approaching Newport. Dick Feely, a senior scientist with NOAA’s Pacific Marine Environmental Laboratory, was just halfway through the first-ever survey meant to measure the amount of carbon dioxide in the surface waters of the Pacific Coast. Already, he could tell from the few samples they had collected that he and his team had the material for a major scientific paper. He called his boss at NOAA to tell him that there was something wrong with the water. It seemed that an increase in carbon dioxide in the atmosphere, propelled by the burning of fossil fuels, was also increasing the acidity of the water.

Read more here

The pH is Falling! Oysters and Economics on the Hill

November 25th, 2014  By Kinberly Dunn, WWF Canada Blog

That’s right – the pH is falling. The pH of our oceans to be exact.

ocean acidification

WWF-Canada President and CEO, David Miller speaking at yesterday’s Oceans on the Hill event . © House of Commons

 

Yesterday afternoon, WWF-Canada and the All Party Ocean Caucus hosted an Oceans on the Hill event to highlight this global issue, which is generally referred to as ocean acidification.

Ocean acidification takes place when carbon dioxide in our atmosphere is absorbed by the ocean, lowering the pH. This naturally occurring process is accelerated by our fossil fuel emissions, resulting in global oceans that are now 26 per cent more acidic than before the industrial revolution.

Parliamentarians, staffers, industry reps, and NGOs gathered in Centre Block to hear from Bill Dewey, Manager of Public Policy and Communications for Taylor Shellfish Farms. Bill came to Parliament to give us an on-the-ground report of ocean acidification’s impacts on the shellfish industry in the Pacific Northwest. As WWF’s CEO David Miller remarked, Bill helped us to “make the connection between the global and the local.”

I come from the dual backgrounds of business and environmental management, so I was pretty excited when I learned that this Oceans on the Hill would not only connect the global to the local, but also provide a real-life, tangible translation of what acidification means for industry.

Oyster farmers in the Pacific Northwest have experienced severe losses in recent years, since the acidification process also means a shortage of the carbonate ions that shellfish larvae need to build their shells. In some areas, there has been acomplete failure of wild oyster seed. The industry has been forced to adapt in order to survive.

Listening to Bill’s presentation – to the story of Taylor’s journey – I couldn’t help but recall this simple truth:

Environmental issues are never just environmental issues. Never.

They’re economic issues too. For ocean acidification, this means negative impacts for the shellfish industry in the Pacific Northwest. It means money spent on sophisticated water monitoring and treatment equipment, so that businesses can remain viable. Unchecked, it could also mean up to a trillion dollars a year in global economic losses by the end of the century.

And they’re people issues. For Canadian shellfish farmers and their supply chains, this means jobs in coastal, rural, and Aboriginal communities – many of which are filled by young people. It means opportunities for those communities to combat outward migration and keep people at home. And, most simply, it means the sustainment of a food source that has been an inherent part of coastal living for hundreds of years.

And so perhaps this was the greater message of yesterday’s event – for me, and for all those who attended. A reminder that it’s not environment or economy, as we are sometimes led to believe, but rather environment for economy. Environmentfor people.

And frankly – whether we’re talking about falling pH or something else – we can no longer afford to think about it any other way.

See article here

Ocean acidification is most urgent threat to marine conservation

By Bill Dewey

November 6th, 2011

THE Taylor family has farmed shellfish in Puget Sound for over a century. The business now faces a challenge to its very existence that we didn’t even know about until five years ago: ocean acidification.

Seawater upwelling on Washington’s coast at times is so corrosive that the shells of oyster larvae dissolve faster than they can form. Recent research shows that the shifting chemistry of seawater impacts far more than oysters. Increasing acidity can deform, stunt, disorient and even kill a number of species throughout the marine food web, from tiny plankton to scallops, crabs and fish. Understanding how these corrosive waters impact the ocean’s ability to produce food is a pressing global security issue.

If we don’t begin addressing ocean acidification promptly, the future of shellfish farming and the entire seafood industry is at stake. On our current path, we are consigning our heirs to a world of increasing scarcity and conflict over ocean resources.

Are we up to it? The tools we need already exist. We can prevent many of acidification’s worst consequences by embracing proven and often profitable strategies to increase energy efficiency, manage fossil-fuel emissions and limit nutrient runoff. We can reduce harm to seafood supplies through scientific monitoring and research. These are all things we can do locally and make a difference.

In the open ocean, acidification results from emissions of carbon dioxide (CO2) that mix into seawater. The oceans absorb about a quarter of the 70 million tons of CO2 we emit every day. This forms carbonic acid. The acid thins the ocean’s naturally rich soup of carbonate, the basic construction material used by many marine organisms to build shells, skeletons and reefs. Along our coasts, human activities amplify these changes by increasing runoff of soil, fertilizer and animal wastes, triggering hypoxia and acidification in many bays and estuaries where we grow shellfish.

For Taylor, acidification is not a future threat estimated by modeling or projections. It’s here now. During 2007-2009, our oyster larvae production declined up to 80 percent. Other West Coast operations were also decimated. At the Whiskey Creek Hatchery in Netarts Bay, Ore., oyster larvae dissolved in their tanks.

By monitoring water chemistry we’ve learned to avoid and buffer corrosive waters — restoring a good portion of our production, for now. We’re fortunate that we have the ability to control the seawater chemistry for our baby oysters in our hatcheries. The picture is not so rosy for critters that must survive in the increasingly acidic ocean.

At Taylor, we feel like the proverbial canary in the coal mine, with a twist: After getting knocked down, we lived to sing. Having seen the impact of high-CO2 waters we feel some responsibility to speak out and make others aware of the serious and only recently understood consequences of continued high carbon emissions on the ocean.

We are fortunate that Seattle is a hub of work on ocean acidification. An international seafood industry study group run by the Sustainable Fisheries Partnership is based here. NOAA’s principal scientist on the issue, Dr. Richard Feely, is at Sand Point. The University of Washington’s Terrie Klinger leads studies on how acidification’s effects might be mitigated. Former 3rd District Congressman Brian Baird was the most knowledgeable representative in Congress on this issue and continues his interest.

All our efforts at marine conservation and resource management will prove inadequate if we don’t tackle the most basic problem of all — ocean acidification.

Bill Dewey is communications and policy director for Taylor Shellfish Farms, based in Shelton, Wash., the largest producer of farmed shellfish in the U.S.