20 facts about Ocean Acidification

In early October, Washington Sea Grant released 20 Facts About Ocean Acidification–the product of a collaboration between WSG, NOAA, Woods Hole Oceanographic Institute, Plymouth Marine Labs and other international partners. Feedback on this initial document has helped us improve the precision of the facts, resulting in this November 2013 update:

OA20Facts

Ocean acidification is most urgent threat to marine conservation

By Bill Dewey

November 6th, 2011

THE Taylor family has farmed shellfish in Puget Sound for over a century. The business now faces a challenge to its very existence that we didn’t even know about until five years ago: ocean acidification.

Seawater upwelling on Washington’s coast at times is so corrosive that the shells of oyster larvae dissolve faster than they can form. Recent research shows that the shifting chemistry of seawater impacts far more than oysters. Increasing acidity can deform, stunt, disorient and even kill a number of species throughout the marine food web, from tiny plankton to scallops, crabs and fish. Understanding how these corrosive waters impact the ocean’s ability to produce food is a pressing global security issue.

If we don’t begin addressing ocean acidification promptly, the future of shellfish farming and the entire seafood industry is at stake. On our current path, we are consigning our heirs to a world of increasing scarcity and conflict over ocean resources.

Are we up to it? The tools we need already exist. We can prevent many of acidification’s worst consequences by embracing proven and often profitable strategies to increase energy efficiency, manage fossil-fuel emissions and limit nutrient runoff. We can reduce harm to seafood supplies through scientific monitoring and research. These are all things we can do locally and make a difference.

In the open ocean, acidification results from emissions of carbon dioxide (CO2) that mix into seawater. The oceans absorb about a quarter of the 70 million tons of CO2 we emit every day. This forms carbonic acid. The acid thins the ocean’s naturally rich soup of carbonate, the basic construction material used by many marine organisms to build shells, skeletons and reefs. Along our coasts, human activities amplify these changes by increasing runoff of soil, fertilizer and animal wastes, triggering hypoxia and acidification in many bays and estuaries where we grow shellfish.

For Taylor, acidification is not a future threat estimated by modeling or projections. It’s here now. During 2007-2009, our oyster larvae production declined up to 80 percent. Other West Coast operations were also decimated. At the Whiskey Creek Hatchery in Netarts Bay, Ore., oyster larvae dissolved in their tanks.

By monitoring water chemistry we’ve learned to avoid and buffer corrosive waters — restoring a good portion of our production, for now. We’re fortunate that we have the ability to control the seawater chemistry for our baby oysters in our hatcheries. The picture is not so rosy for critters that must survive in the increasingly acidic ocean.

At Taylor, we feel like the proverbial canary in the coal mine, with a twist: After getting knocked down, we lived to sing. Having seen the impact of high-CO2 waters we feel some responsibility to speak out and make others aware of the serious and only recently understood consequences of continued high carbon emissions on the ocean.

We are fortunate that Seattle is a hub of work on ocean acidification. An international seafood industry study group run by the Sustainable Fisheries Partnership is based here. NOAA’s principal scientist on the issue, Dr. Richard Feely, is at Sand Point. The University of Washington’s Terrie Klinger leads studies on how acidification’s effects might be mitigated. Former 3rd District Congressman Brian Baird was the most knowledgeable representative in Congress on this issue and continues his interest.

All our efforts at marine conservation and resource management will prove inadequate if we don’t tackle the most basic problem of all — ocean acidification.

Bill Dewey is communications and policy director for Taylor Shellfish Farms, based in Shelton, Wash., the largest producer of farmed shellfish in the U.S.

What we can do about ocean acidification and climate change

This op-ed is written jointly by the CEO of one of the largest shellfish growers (a close partner in our work) and the chairman of Washington’s Blue Ribbon Panel on Ocean Acidification:

October 9th, 2013. Special to The Seattle Times

Meeting the challenge of ocean acidification will require action at a level not yet seen from government, industry and individuals, write guest columnists Jay Manning and Bill Taylor.

The Seattle Times’ recent outstanding series on ocean acidification “Sea Change” stands as an uncomfortably vivid warning that our marine world — and the economies and lifestyles that depend on it — is under siege.

The images of coral reefs and oyster larvae ravaged by ocean acidification provide haunting notice to Northwest residents of the consequences of inaction.

Though the perils of ocean acidification are well-documented, reading this series prompted anew the questions, “What can we do and how can we prevent this from happening?”

The Pacific Northwest has some outstanding leaders and scientists on the cutting edge of addressing ocean acidification. Because of their actions, the region is not starting from square one.

The 2012 Washington State’s Ocean Acidification Blue Ribbon Panel identified a series of concrete steps that were codified in Executive Order 12-07 by former Gov. Chris Gregoire.

The Washington Legislature has also taken some critical first steps on this issue, providing funding in July to establish an Ocean Acidification Center at the University of Washington and the Washington Marine Resources Advisory Council. Created within Gov. Jay Inslee’s office, this Council, among other things, will advise and work with UW and others to conduct an ongoing analysis on the effects and sources of ocean acidification.

U.S. Sen. Maria Cantwell, D-Wash., has taken the lead in Washington, D.C., securing federal support to help Washington’s shellfish industry monitor and adapt to the corrosive seawater conditions and making sure the nation’s top marine scientists are thinking about the next steps.

Read more here

Scientists Embark On West Coast Ocean Acidification Mission

July 25, 2013 | KCTS9

shellfish

The shellfish industry, which injects about $111 million each year into the Pacific Northwest’s economy, is particularly at risk from the threat of ocean acidification. | credit: Katie Campbell |

SEATTLE — On Monday scientists from the National Oceanic and Atmospheric Administration will begin a one-month U.S. West Coast expedition to investigate ocean acidification, an issue that poses a serious threat to the Pacific Northwest’s shellfish industry.

“We will for the first time not only study the chemistry of acidification, but also study the biological impacts on the marine ecosystems in the open ocean,” says Richard A. Feely, a scientist from NOAA’s Pacific Marine Environmental Research Laboratory in Seattle. Feely is co-chief of the mission.

Over the past 30 years, oceanographers like Feely have found that the burning of fossil fuels has released about 2 trillion tons of carbon dioxide into the atmosphere. About a quarter of that has been absorbed by the oceans, Feely says. Carbon dioxide reacts with seawater to form carbonic acid and that acid can corrode the shells of calcifying organisms including oysters and clams.

This upcoming expedition follows the same path taken during a similar survey in 2007, stretching from the Canadian border to the Mexican border. That earlier expedition was the first survey to show that the West Coast of North America is a hot spot for ocean acidification.

Read more here

Maine Confronts a Sea Change

July 03, 2013 18:55
By Brad Warren
 
Bill Mook suspected trouble in the water when he first noticed plankton blooms dwindling, raising questions about the future supply of natural feed for the clams and oysters he raises in a tidal reach of Maine’s Damariscotta River.
 
Over the last decade he witnessed an increase in intense storms that brought torrential rains. Mook also spotted a pattern inside his hatchery, which spawns and produces oyster “seed” for his own and other farms in the region. After heavy rains, larvae and their tank-raised microalgae feed became harder to grow. Mook saw his tiny, new-hatched oysters circling at the bottom of the tanks instead of swimming actively through the water column as usual.
 
This was the same larval behavior reported by West Coast oyster hatchery managers when their larvae began dying in increasingly corrosive water, threatening “seed” supplies. The worst-hit animals failed to develop properly or even to “set”—a crucial step in which bivalves pick a spot to settle down and grow up.
 
The veteran producer began speaking out to other growers, fishermen and resources managers. He called for investigation of changes in seawater chemistry that may soon pack the kind of wallop that nearly wiped out seed supplies for West Coast shellfish farmers in the late 2000s.
 
The West Coast industry managed to temporarily avert that crisis by partnering with scientists to take careful measurements and devise adaptive maneuvers. But the episode generated lessons that are rippling through the world’s seafood industry. And the underlying threat is growing. Scientists have firmly linked the Pacific Coast oyster crisis to ocean acidification, a consequence of industrial society’s swelling emissions of carbon dioxide (CO2) from burning coal, oil and gas. 
 
If similar effects are showing up in Maine, can the state meet the challenge?.
 
On the West Coast, the effort to detect and dodge corrosive water did more than protect growers. It revealed a gathering danger to seafood supplies, jobs, and coastal communities. It also enabled Washington state—the nation’s largest farmed shellfish producer—to launch a comprehensive effort to understand this threat and begin defending its fisheries and coastal waters from souring seawater. I’m proud to play a part in this work.
 
Just over a year ago shellfish growers and tribal leaders persuaded Washington Gov. Christine Gregoire to create a Blue Ribbon Panel on Ocean Acidification, based on a proposal I drafted. Gov. Gregoire convened this bipartisan panel and tasked it to recommend strategies for the state to understand, adapt to, mitigate and remediate damage from acidification.
 
When the panel completed its report in November 2012, Gov. Gregoire promptly instructed state agencies to implement its recommendations. She reallocated $3.3 million in her budget to do the job, including funds for a new ocean acidification research center.
 
Washington’s initiative is the first of its kind, but it won’t be the last. Fishermen, growers, scientists, conservationists and coastal leaders are enlisting state governments to help understand the impacts of changing ocean chemistry and develop tactics to sustain seafood production and marine ecosystems.
 
Mook reckons it is time for Maine to devise its own strategy. “We need to get people who are stakeholders and experts and form some kind of group,” he says.
 
With its $330 million lobster industry, Maine has thousands of jobs at stake. Recent research has peeled back the impression that lobsters might be immune; preliminary findings in Maine and Nova Scotia show reduced growth and delayed development in high-CO2 water. Meanwhile Maine’s clam industry faces both an invasion of destructive green crabs and acidification that weakens shells, making the mollusks more vulnerable to predators.
 
As Maine considers its options, one lesoson from the West Coast can save a lot of trouble and money: “Turn on the lights.” That’s how Mark Wiegardt of Oregon’s Whiskey Creek Shellfish hatchery described the results when scientists from Oregon State University helped his team to measure and document effects of souring water on fresh-spawned larvae. “We wouldn’t be in business without it,” he says. One effective tactic: hatchery managers pump in seawater during sunny afternoons. By that time of day, the monitoring data show the water is “sweeter.” Whiskey Creek managers think that sun-loving seagrass near their intake soaks up enough CO2 to protect vulnerable larvae
 
To fix trouble, you need to see it. That’s why in Maine, my program is supporting research to help validate preliminary findings on acidification impacts on lobsters and clams. We hope these efforts can help Maine’s industry and policy leaders stave off future harm.

Ocean Acidification Linked to Larval Oyster Failure

ScienceDaily (Apr. 11, 2012) — Researchers at Oregon State University have definitively linked an increase in ocean acidification to the collapse of oyster seed production at a commercial oyster hatchery in Oregon, where larval growth had declined to a level considered by the owners to be “non-economically viable.”

A study by the researchers found that elevated seawater carbon dioxide (CO2) levels, resulting in more corrosive ocean water, inhibited the larval oysters from developing their shells and growing at a pace that would make commercial production cost-effective. As atmospheric CO2 levels continue to rise, this may serve as the proverbial canary in the coal mine for other ocean acidification impacts on shellfish, the scientists say.

Click here to read more

A screen covered with oyster larvae, taken in 2007 at the Whiskey Creek Shellfish Hatchery near Netarts Bay, Ore. A 2012 study has found that Increasingly acidic ocean water is preventing larvae from developing shells. (Credit: Lynn Ketchum, Oregon State University)

Algae and Puget Sound Acidification Linked

The ocean absorbs a large portion of the CO2 that we release into the atmosphere from our power plants and tail pipes. But when it gets there that CO2 makes the water more acidic and less hospitable for some creatures, like shellfish. In Puget Sound some shellfish hatcheries have already lost millions of oyster larvae because of exposure to acidic water.

Ocean acidification has scientists and policymakers in the Northwest concerned. Washington Governor Chris Gregoire has convened a panel on Ocean Acidification, which met this week. Ashley Ahearn reports.

Remember those little pieces of paper you used to measure pH back in junior high school? You’d stick them into your can of coke or on your tongue and the color would tell you how acidic that liquid was?

Well if you stuck litmus paper into the world’s oceans it would come out closer and closer to the acidic side of the pH scale.

Feeley: “The acidity of the ocean has increased by 30 % over the last 250 years.”

Read more here