Podcast Interview with Director of the Scripps Institute of Oceanography, Dr. Margaret Leinen

On this episode of our Changing Waters podcast, host and GOH Director Brad Warren sits down with Dr. Margaret Leinen, the Director of the Scripps Institution of Oceanography. Margaret Leinen, a highly distinguished national leader and oceanographer, was appointed the eleventh director of Scripps Institution of Oceanography at UC San Diego in July 2013. She also serves as UC San Diego’s vice chancellor for marine sciences and dean of the School of Marine Sciences. She joined UC San Diego in October 2013.

Leinen is an award-winning oceanographer and an accomplished executive with extensive national and international experience in ocean science, global climate and environmental issues, federal research administration, and non-profit startups. She is a researcher in paleo-oceanography and paleo-climatology. Her work focuses on ocean sediments and their relationship to global biogeochemical cycles and the history of Earth’s ocean and climate.

Ocean Alkalinity Enhancement

This is a useful synthesis of current knowledge on ocean alkalinity enhancement, an approach to carbon removal that could have far-reaching effects (both positive and negative) on the ocean and coastal communities. This amounts to capturing carbon dioxide and trapping it back in mineral form. Getting the CO2 to stay put, maximizing its benefits, and managing its potential risks will require close attention. We believe people who depend on healthy oceans for food and livelihood should have a seat at the table.  

Brad Warren, Executive Director of National Fisheries Conservation Center and its Global Ocean Health program

CEA Ocean Alkalinity Enhancement report:  https://www.ceaconsulting.com/wp-content/uploads/Ocean-Alkalinity-Enhancement-CEA-proceedings-doc..pdf

Maine Governor Speaks to the State’s Changing Ocean Conditions

November 4th, 2019

GOH Executive Director Brad Warren was present as Maine Gov Janet Mills spoke about her state’s vulnerability to changing ocean conditions and her commitment to acting on it. He writes:

“Vowing to tackle climate change and ocean acidification head-on, Maine Gov. Janet Mills delivered a rousing opening talk at the Gulf of Maine 2050 Symposium in Portland. The Symposium is designed to help attendees learn how the Gulf of Maine is expected to change in the next 30 years in the face of a changing climate. The governor noted that climate change and shifting ocean chemistry are already harming fisheries in Maine, noting effects on shellfish, lobsters, cod, and other parts of the state’s $2 billion seafood economy. Gov. Mills stated that she has committed Maine to achieve carbon neutrality by 2045. She also noted that Maine has joined the US Climate Alliance, a coalition of states representing 55% of the nation’s population and $11.7 trillion in GDP, saying, “We committed to upholding the Paris climate accord no matter what happens in Washington.”

Stay tuned for a new “Changing Waters” podcast coming from Global Ocean Health/National Fisheries Conservation Center, featuring Governor Janet Mills interviewed by Brad Warren. And please donate to help support these great podcasts (past interviewees include former President of Ireland and climate justice advocate Mary Robinson and fisheries legend Ray Hilborn!). Every dollar counts, and we stretch them farther than any other organization.

~Protecting seafood at the source~

All donations are tax-deductible – just use the button in the lower left of this page. Thanks for your support!

The desperate race to cool the ocean before it’s too late

Technologyreview.com, By Holly Jean Buck, April 23rd

Holly Jean Buck is a fellow at UCLA’s Institute of the Environment and Sustainability. This is an adapted excerpt from her upcoming book After Geoengineering: Climate Tragedy, Repair, and Restoration (September 2019, Verso Books).

Coral reefs smell of rotting flesh as they bleach. The riot of colors—yellow, violet, cerulean—fades to ghostly white as the corals’ flesh goes translucent and falls off, leaving their skeletons underneath fuzzy with cobweb-like algae.

Corals live in symbiosis with a type of algae. During the day, the algae photosynthesize and pass food to the coral host. During the night, the coral polyps extend their tentacles and catch passing food. Just 1 °C of ocean warming can break down this coral-algae relationship. The stressed corals expel the algae, and after repeated or prolonged episodes of such bleaching, they can die from heat stress, starve without the algae feeding them, or become more susceptible to disease.

Australia’s Great Barrier Reef—actually a 2,300-kilometer (1,400-mile) system made up of nearly 3,000 separate reefs—has suffered severe bleaching in the past few years. Daniel Harrison, an Australian oceanographer looking at what might be done to buy more time for the Great Barrier Reef, says the situation is getting dire. “There might be as little as 25% of shallow-water coral cover left from pre-anthropogenic times. We don’t really know, because nobody started surveying before 1985,” he tells me. “You’ve got less than 1% of the ocean in coral reefs, and 25% of all marine life. We’re looking at losing all of that really quite quickly, in evolutionary terms. In human-lifetime terms.”

Coral reefs are not just about colorful fish and exotic species. Reefs protect coasts from storms; without them, waves reaching some Pacific islands would be twice as tall. Over 500 million people depend on reef ecosystems for food and livelihoods. Even if the temperature increase eventually stabilizes at 1.5 °C a century or two from now, it’s not known how well coral reef ecosystems will survive a temporary overshoot to higher temperatures.

The corals are like the canary in the coal mine.

The corals are like the canary in the coal mine, Harrison says: “They’re very temperature-sensitive. I really do think it’s just a harbinger of things to come. You know, the coral ecosystem might collapse first, but I think there might be quite a few more ecosystems that’ll follow it. Life is very resilient, but ecosystems as we know them aren’t.”

Read more about corals, cooling the ocean, and climate change

‘One morning we came in and everything was dead’: Climate change and Oregon oysters

 

By Travis Knudsen Wednesday, March 1st 2017, KVAL.com
KVAL oyster pic Whiskey CreekTILLAMOOK, Ore. – The Whiskey Creek Shellfish Hatchery is quietly tucked away off the Netarts Bay in Tillamook.

As the state’s only shellfish hatchery, it’s a large part of the oyster industry in the region.

Alan Barton is the Production Manager at Whiskey Creek.

He’s worked there for the past decade and says they play a big part bringing shellfish from ocean to plate.

“We probably produce about a third of all oyster larvae on the West Coast,” says Barton.

In 2007 and 2008, the whole operation was nearly shut down.

Something changed in the waters of Netarts Bay, which Whiskey Creek uses to spawn oysters.

Their output was reduced by nearly 75 percent each year.

A hatchery out of business would have had a substantial impact on the oyster industry.

The Washington Shellfish Initiative estimated that shellfish growers employ, directly and indirectly, more than 3,200 people across the Pacific Northwest with an economic impact around $270 million.

“In these rural areas along the coastline, 3,000 jobs are pretty important,” says Barton. “These are just blue collar guys.”

Initially, Whiskey Creek Shellfish Hatchery staff believed their mass die-offs were caused by biological problems, like foreign bacteria – or the wrong type of algae used for food.

“I remember one morning, we came in and everything was dead, all of it,” says Barton.

“It was our worst day, but also our best day. Because it’s when we realized the problem might be with the water from the bay.”

That is when the hatchery turned to Oregon State University for help.

The Whiskey Creek Shellfish Hatchery believed “ocean acidification,” a byproduct of climate change, was to blame.

The National Oceanic and Atmospheric Association (NOAA) define ocean acidification, or “OA” for short as, “a reduction in the pH of the ocean over an extended period of time, caused primarily by uptake of carbon dioxide (CO2) from the atmosphere.”

In essence, more carbon dioxide in the atmosphere the more it will sink into the ocean.

Once enough of it gets into the water, it’s chemical makeup changes.

That can have a wide variety of effects on local animals and the ecosystem they live in.

George Waldbusser, Associate Professor at OSU, says ocean acidification is undoubtedly connected to climate change.

“By burning fossil fuels, we’ve increased the concentration of CO2 in the atmosphere by 30 percent,” he says. “That’s lowered the pH of the ocean — or the acidity of the ocean — by about 30 percent, which shifts the saturation state and makes it harder for organisms to make shells.”

The drop in acid in water is troubling for shellfish.

During the first two weeks of an oyster’s life they are especially sensitive to the level of oxygen and acid in the water.

In high acid events, oyster’s shells deform – and often times they die.

Waldbusser believes conditions will only get harder, not easier on shellfish.

“We know the chemistry will change and these extreme events will get worse and worse. And so periods of time that are easy or good to grow oysters will diminish in time for the hatchery,” he says.

Fortunately, OSU was able to help the Whiskey Creek Shellfish Hatchery.

Burke Hales, a professor at OSU, created a way to measure the chemistry of the water used to spawn shellfish.

That allows the hatchery to treat the water and provide a successful growing environment for their oysters.

“With that knowledge,” Hales says, “the Whiskey Creek folks are able to change their operations: the timing of their water pumping, how they condition the water. Now they’re back to almost 100 percent of their pre-crash productivity.”

But Hales believes the current method of overcoming ocean acidification is not a long-term solution.

“Netarts Bay has always had some good times; it’s always had some bad times. But the frequency of the good times is less and the frequency of the bad times is greater. And the bad times are a little bit worse than they used to be,” says Hales.

To combat the problem for the long term researchers at OSU point to reducing the amount of carbon dioxide released into the atmosphere which causes ocean acidification.

“We have to recognize that fossil fuel emissions are a cause of climate change and ocean acidification. We also have to recognize that we’ve relied on them for a long time and we have to find reasonable transition plans to move away from fossil fuels and into alternative energy,” says Waldbusser.

For Barton at the Whiskey Creeks Shellfish Hatchery, he’s thankful they’ve found a way to overcome the effect the effect carbon dioxide has had on the ocean.

“If we had not figured out what ocean acidification was doing to this hatchery we would for sure be out of business,” he says.

However, he is not confident their current techniques for treating the water will sustain them forever.

“The short term prospects are pretty good. But within the next couple of decades we’re going to cross a line I don’t think we’re going to be able to come back from,” he says. “A lot of people have the luxury of being skeptics about climate change and ocean acidification. But we don’t have that choice. If we don’t change the chemistry of the water going into our tanks, we’ll be out of business. It’s that simple for us.”

Originally published here

Our Deadened, Carbon-Soaked Seas

The New York Times, October 15th, 2015,

Ocean and coastal waters around the world are beginning to tell a disturbing story. The seas, like a sponge,

nytimes oa picare absorbing increasing amounts of carbon dioxide from the atmosphere, so much so that the chemical balance of our oceans and coastal waters is changing and a growing threat to marine ecosystems. Over the past 200 years, the world’s seas have absorbed more than 150 billion metric tons of carbon from human activities. Currently, that’s a worldwide average of 15 pounds per person a week, enough to fill a coal train long enough to encircle the equator 13 times every year.

We can’t see this massive amount of carbon dioxide that’s going into the ocean, but it dissolves in seawater as carbonic acid, changing the water’s chemistry at a rate faster than seen for millions of years. Known as ocean acidification, this process makes it difficult for shellfish, corals and other marine organisms to grow, reproduce and build their shells and skeletons.

About 10 years ago, ocean acidification nearly collapsed the annual $117 million West Coast shellfish industry, which supports more than 3,000 jobs. Ocean currents pushed acidified water into coastal areas, making it difficult for baby oysters to use their limited energy to build protective shells. In effect, the crop was nearly destroyed.

Human health, too, is a major concern. In the laboratory, many harmful algal species produce more toxins and bloom faster in acidified waters. A similar response in the wild could harm people eating contaminated shellfish and sicken, even kill, fish and marine mammals such as sea lions.

Increasing acidity is hitting our waters along with other stressors. The ocean is warming; in many places the oxygen critical to marine life is decreasing; pollution from plastics and other materials is pervasive; and in general we overexploit the resources of the ocean. Each stressor is a problem, but all of them affecting the oceans at one time is cause for great concern. For both the developing and developed world, the implications for food security, economies at all levels, and vital goods and services are immense.

This year, the first nationwide study showing the vulnerability of the $1 billion U.S. shellfish industry to ocean acidification revealed a considerable list of at-risk areas. In addition to the Pacific Northwest, these areas include Long Island Sound, Narragansett Bay, Chesapeake Bay, the Gulf of Mexico, and areas off Maine and Massachusetts. Already at risk are Alaska’s fisheries, which account for nearly 60 percent of the United States commercial fish catch and support more than 100,000 jobs.

Ocean acidification is weakening coral structures in the Caribbean and in cold-water coral reefs found in the deep waters off Scotland and Norway. In the past three decades, the number of living corals covering the Great Barrier Reef has been cut in half, reducing critical habitat for fish and the resilience of the entire reef system. Dramatic change is also apparent in the Arctic, where the frigid waters can hold so much carbon dioxide that nearby shelled creatures can dissolve in the corrosive conditions, affecting food sources for indigenous people, fish, birds and marine mammals. Clear pictures of the magnitude of changes in such remote ocean regions are sparse. To better understand these and other hotspots, more regions must be studied.

Read more here

New England Takes on Ocean Pollution State By State

By Patrick Whittle, Associated Press, March 30, 2015

Portland, Maine — A group of state legislators in New England want to form a multi-state pact to counter increasing ocean acidity along the East Coast, a problem they believe will endanger multi-million dollar fishing industries if left unchecked.

The legislators’ effort faces numerous hurdles: They are in the early stages of fostering cooperation between many layers of government, hope to push for potentially expensive research and mitigation projects, and want to use state laws to tackle a problem scientists say is the product of global environmental trends.

But the legislators believe they can gain a bigger voice at the federal and international levels by banding together, said Mick Devin, a Maine representative who has advocated for ocean research in his home state. The states can also push for research to determine the impact that local factors such as nutrient loading and fertilizer runoff have on ocean acidification and advocate for new controls, he said.

“We don’t have a magic bullet to reverse the effects of ocean acidification and stop the world from pumping out so much carbon dioxide,” Devin said. “But there are things we can do locally.”

The National Oceanic & Atmospheric Administration says the growing acidity of worldwide oceans is tied to increased atmospheric carbon dioxide, and they attribute the growth to fossil fuel burning and land use changes. The atmospheric concentration of carbon dioxide increased from 280 parts per million to over 394 parts per million over the past 250 years, according to NOAA.

Carbon dioxide is absorbed by the ocean, and when it mixes with seawater it reduces the availability of carbonate ions, scientists at Woods Hole Oceanographic Institution said. Those ions are critical for marine life such as shellfish, coral and plankton to grow their shells.

The changing ocean chemistry can have “potentially devastating ramifications for all ocean life,” including key commercial species, according to NOAA.

The New England states are following a model set by Maine, which commissioned a panel to spend months studying scientific research about ocean acidification and its potential impacts on coastal industries. Legislators in Rhode Island and Massachusetts are working on bills to create similar panels. A similar bill was shot down in committee in the New Hampshire legislature but will likely be back in 2016, said Rep. David Borden, who sponsored the bill.

Read more here

European Union is funding a €3.6 million shellfish study to understand affects of OA

A team of international scientists has launched an ambitious mission to understand how the warming and acidification of the world’s oceans will affect Europe’s shellfish.

Currently scientists do not fully understand how species such as oysters, mussels, scallops and clams produce their shells, or how a change in environment will affect their populations. To address this, the European Union is funding a €3.6 million programme called CACHE (Calcium in a Changing Environment).

Coordinated by the British Antarctic Survey (BAS) in Cambridge this multi-national programme, which aims to train a new generation of marine scientists, will look at every aspect of how the animals produce their shells and strive to identify populations which are resilient to climate change.

The shellfish industry is an important contributor to the European marine economy – dubbed the “Blue economy” – which is currently worth €500 billion every year and provides an estimated 5.4 million jobs.

These relatively small animals play an important role in the oceans because they are a crucial part of marine biodiversity and, as they make their shells out of calcium carbonate, they have a role in absorbing CO2. While the fishery industry built around them provides jobs in rural communities the animals themselves are also seen as an important and healthy food.

Shellfish have been highlighted as being particularly at risk under future climate change scenarios.

The risk comes because their shells are made of calcium carbonate – a substance which dissolves under acidic conditions. As the oceans become warmer and more acidic their shells will either thin, or the animals will have to expend more energy on producing thicker shells. This will affect their population sizes and the quality of the meat they produce, directly affecting the fisheries economy and damaging consumer choice.

Read more here:

Ocean Acidification Linked to Larval Oyster Failure

ScienceDaily (Apr. 11, 2012) — Researchers at Oregon State University have definitively linked an increase in ocean acidification to the collapse of oyster seed production at a commercial oyster hatchery in Oregon, where larval growth had declined to a level considered by the owners to be “non-economically viable.”

A study by the researchers found that elevated seawater carbon dioxide (CO2) levels, resulting in more corrosive ocean water, inhibited the larval oysters from developing their shells and growing at a pace that would make commercial production cost-effective. As atmospheric CO2 levels continue to rise, this may serve as the proverbial canary in the coal mine for other ocean acidification impacts on shellfish, the scientists say.

Click here to read more

A screen covered with oyster larvae, taken in 2007 at the Whiskey Creek Shellfish Hatchery near Netarts Bay, Ore. A 2012 study has found that Increasingly acidic ocean water is preventing larvae from developing shells. (Credit: Lynn Ketchum, Oregon State University)